

Welcome to XMLStarlet CFFI’s documentation!

Contents:

	XMLStarlet CFFI
	Features

	Credits

	Installation
	Stable release

	From sources

	Usage
	xml CLI Help

	xmlstarlet.edit()

	Contributing
	Types of Contributions

	Get Started!

	Pull Request Guidelines

	Tips

	Deploying

	Credits
	XMLStarlet Developers

	XMLStarlet CFFI Python Bindings Maintainer

	Contributors

	History
	1.6.8 (2022-04-30)

	1.6.7 (2020-12-24)

	1.6.6 (2020-10-04)

	1.6.5 (2020-09-29)

	1.6.3 (2019-10-29)

	1.6.2 (2019-10-28)

	1.6.1 (2019-10-23)

Indices and tables

	Index

	Module Index

	Search Page

XMLStarlet CFFI

[image: _images/xmlstarlet.svg]
 [https://pypi.python.org/pypi/xmlstarlet][image: cibuildwheel]
 [https://github.com/dimitern/xmlstarlet/actions?query=event%3Apush+branch%3Amaster+workflow%3Acibuildwheel][image: Documentation Status]
 [https://xmlstarlet.readthedocs.io/en/latest/?badge=latest]XMLStarlet Toolkit: Python CFFI bindings

	Free software: MIT license

	Documentation (this package): https://xmlstarlet.readthedocs.io.

	Original XMLStarlet Documentation: http://xmlstar.sourceforge.net/doc/UG/

Features

Supports all XMLStarlet commands from Python, just import xmlstarlet:

	edit(*args): Edit/Update XML document(s)

	select(*args): Select data or query XML document(s) (XPATH, etc)

	transform(*args): Transform XML document(s) using XSLT

	validate(*args): Validate XML document(s) (well-formed/DTD/XSD/RelaxNG)

	format(*args): Format XML document(s)

	elements(*args): Display element structure of XML document

	canonicalize(*args): XML canonicalization

	listdir(*args): List directory as XML (NOT supported on Windows)

	escape(*args): Escape special XML characters

	unescape(*args): Unescape special XML characters

	pyx(*args): Convert XML into PYX format (based on ESIS - ISO 8879)

	depyx(*args): Convert PYX into XML

For some examples, have a look at tests/test_xmlstarlet.py.

Credits

Kudos to XMLStarlet and its maintainers and users (original sources on SourceForge [https://sourceforge.net/projects/xmlstar/])!

This package was created with Cookiecutter [https://github.com/audreyr/cookiecutter] and the audreyr/cookiecutter-pypackage [https://github.com/audreyr/cookiecutter-pypackage] project template.

Binary wheels built via GitHub Actions by cibuildwheel [https://github.com/joerick/cibuildwheel]

Installation

Stable release

To install XMLStarlet CFFI, run this command in your terminal:

$ pip install xmlstarlet

This is the preferred method to install XMLStarlet CFFI, as it will always install the most recent
stable release from https://pypi.org.

Binary wheels are automatically built and published for all major OS platforms
(Linux, MacOS, and Windows), as well as source packages on every tagged release.

Supported and tested on (64-bit) Python versions from 3.6+.

If you don’t have pip [https://pip.pypa.io] installed, this Python installation guide [http://docs.python-guide.org/en/latest/starting/installation/] can guide
you through the process.

From sources

The sources for XMLStarlet CFFI can be downloaded from the Github repo [https://github.com/dimitern/xmlstarlet].

You can either clone the public repository:

$ git clone git://github.com/dimitern/xmlstarlet

Or download the tarball [https://github.com/dimitern/xmlstarlet/tarball/master]:

$ curl -OL https://github.com/dimitern/xmlstarlet/tarball/master

Once you have a copy of the source, you can install it with:

$ python setup.py install

Ideally, you would do this inside a virtualenv.

Usage

Let’s see some usage examples and description of each command.

xml CLI Help

The original xml CLI command has the following help description:

XMLStarlet Toolkit: Command line utilities for XML
Usage: ./xml [<options>] <command> [<cmd-options>]
where <command> is one of:
 ed (or edit) - Edit/Update XML document(s)
 sel (or select) - Select data or query XML document(s) (XPATH, etc)
 tr (or transform) - Transform XML document(s) using XSLT
 val (or validate) - Validate XML document(s) (well-formed/DTD/XSD/RelaxNG)
 fo (or format) - Format XML document(s)
 el (or elements) - Display element structure of XML document
 c14n (or canonic) - XML canonicalization
 ls (or list) - List directory as XML
 esc (or escape) - Escape special XML characters
 unesc (or unescape) - Unescape special XML characters
 pyx (or xmln) - Convert XML into PYX format (based on ESIS - ISO 8879)
 p2x (or depyx) - Convert PYX into XML
<options> are:
 -q or --quiet - no error output
 --doc-namespace - extract namespace bindings from input doc (default)
 --no-doc-namespace - don't extract namespace bindings from input doc
 --version - show version
 --help - show help
Wherever file name mentioned in command help it is assumed
that URL can be used instead as well.

Type: .xml <command> --help <ENTER> for command help

XMLStarlet is a command line toolkit to query/edit/check/transform
XML documents (for more information see http://xmlstar.sourceforge.net/)

From Python

To use XMLStarlet CFFI in a project:

import xmlstarlet

Each command takes the same string arguments as the C version of xmlstarlet, and returns an
integer exit code (0 means success).

Some examples for supported commands can be seen below.

xmlstarlet.edit()

Original xml CLI help text for edit:

XMLStarlet Toolkit: Edit XML document(s)
Usage: ./xml ed <global-options> {<action>} [<xml-file-or-uri> ...]
where
 <global-options> - global options for editing
 <xml-file-or-uri> - input XML document file name/uri (stdin otherwise)

<global-options> are:
 -P, or -S - preserve whitespace nodes.
 (or --pf, --ps) Note that space between attributes is not preserved
 -O (or --omit-decl) - omit XML declaration (<?xml ...?>)
 -L (or --inplace) - edit file inplace
 -N <name>=<value> - predefine namespaces (name without 'xmlns:')
 ex: xsql=urn:oracle-xsql
 Multiple -N options are allowed.
 -N options must be last global options.
 --net - allow network access
 --help or -h - display help

where <action>
 -d or --delete <xpath>
 --var <name> <xpath>
 -i or --insert <xpath> -t (--type) elem|text|attr -n <name> [-v (--value) <value>]
 -a or --append <xpath> -t (--type) elem|text|attr -n <name> [-v (--value) <value>]
 -s or --subnode <xpath> -t (--type) elem|text|attr -n <name> [-v (--value) <value>]
 -m or --move <xpath1> <xpath2>
 -r or --rename <xpath1> -v <new-name>
 -u or --update <xpath> -v (--value) <value>
 -x (--expr) <xpath>

XMLStarlet is a command line toolkit to query/edit/check/transform
XML documents (for more information see http://xmlstar.sourceforge.net/)

Let’s assume you have this test.xml file you want to modify:

<h:html xmlns:h="urn:local:html">
 <h:body>
 <h:p>
 <h:a h:href="#">
 Link
 </h:a>
 </h:p>
 </h:body>
</h:html>

The modification is to find the first hyperlink, extract its text content, and add it as the
value of a new attribute text= on the root (html) element, like so:

<?xml version="1.0"?>
<h:html xmlns:h="urn:local:html" text="Link">
 <h:body>
 <h:p>
 <h:a h:href="#">
 Link
 </h:a>
 </h:p>
 </h:body>
</h:html>

Here’s how you can use the edit command to achieve this:

result = xmlstarlet.edit(
 "-S",
 "-N", "_=urn:local:html",
 "--var", "foo", "translate(//_:a[1]/text(), ' \n', '')",
 "-s", "/_:html", "-t", "attr", "-n", "text", "-v", "X",
 "-u", "$prev", "-x", "$foo",
 "./test.xml",
 "./test2.xml",
)
if result != 0:
 print("Cannot update the XML")

This demonstrates a number of options and techniques:

	-S

	preserve whitespaces in the input (do not trim).

	-N _=urn:local:html

	define namespaces present in the input (usable in expressions), here we define _ as
the namespace prefix for urn:local:html.

	--var foo translate(//_:a[1]/text(), ' \n', '')

	assign the result of an XPath expression (in this case, a function call removing spaces
and new-lines from the text content of the first a element), to a named variable foo.

	-s /_:html -t attr -n text -v X

	create a subnode (in this case, attribute), named text, with value X (temporarily),
as a child of the root h:html element.

	-u $prev -x $foo

	update the node at the given XPath with the result of another XPath expression. In this case,
the special variable $prev contains the last matched XPath (/_:html), and the variable
$foo contains "Link".

	./test.xml

	the input XML file to operate on.

	./test2.xml

	the output XML file (will be overwritten).

Tip

More examples can be found in the original xmlstarlet edit [http://xmlstar.sourceforge.net/doc/UG/ch04s03.html] documentation.

Contributing

Contributions are welcome, and they are greatly appreciated! Every little bit
helps, and credit will always be given.

You can contribute in many ways:

Types of Contributions

Report Bugs

Report bugs at https://github.com/dimitern/xmlstarlet/issues.

If you are reporting a bug, please include:

	Your operating system name and version.

	Any details about your local setup that might be helpful in troubleshooting.

	Detailed steps to reproduce the bug.

Fix Bugs

Look through the GitHub issues for bugs. Anything tagged with “bug” and “help
wanted” is open to whoever wants to implement it.

Implement Features

Look through the GitHub issues for features. Anything tagged with “enhancement”
and “help wanted” is open to whoever wants to implement it.

Write Documentation

XMLStarlet CFFI could always use more documentation, whether as part of the
official XMLStarlet CFFI docs, in docstrings, or even on the web in blog posts,
articles, and such.

Submit Feedback

The best way to send feedback is to file an issue at https://github.com/dimitern/xmlstarlet/issues.

If you are proposing a feature:

	Explain in detail how it would work.

	Keep the scope as narrow as possible, to make it easier to implement.

	Remember that this is a volunteer-driven project, and that contributions
are welcome :)

Get Started!

Ready to contribute? Here’s how to set up xmlstarlet for local development.

	Fork the xmlstarlet repo on GitHub.

	Clone your fork locally:

$ git clone git@github.com:your_name_here/xmlstarlet.git

	Install your local copy into a virtualenv. Assuming you have Python 3 installed,
this is how you set up your fork for local development:

$ cd xmlstarlet/
$ python3 -m venv .venv
$ source .venv/bin/activate
$ pip install -r requirements.txt

The following one-liner command goes through all steps: cleans all
build artifacts (if any), uninstalls the package (if installed), runs
the linters (asserting scores haven’t gone down and no new issues are
found), the formatter (checking formatting won’t change any of the files),
builds a source distribution, then a binary wheel, running all tests,
producing a coverage HTML report, and finally building the sphinx HTML,
displayed in a browser on completion:

$ invoke clean --uninstall lint format --check dist --wheel test coverage docs --browser

	Create a branch for local development:

$ git checkout -b name-of-your-bugfix-or-feature

Now you can make your changes locally.

	When you’re done making changes, check that your changes pass flake8 and the
tests, including testing other Python versions with tox:

$ invoke format lint test # optional; tox runs those as well
$ tox

Both invoke and tox are already installed from requirements.txt.
To re-create all the tox environments and run all matrix combinations:

$ tox -r -e ALL # equivalent to `invoke clean-tests --tox`

	Commit your changes and push your branch to GitHub:

$ git add .
$ git commit -m "Your detailed description of your changes."
$ git push -u origin name-of-your-bugfix-or-feature

	Submit a pull request through the GitHub website.

Pull Request Guidelines

Before you submit a pull request, check that it meets these guidelines:

	The pull request should include tests.

	If the pull request adds functionality, the docs should be updated. Put
your new functionality into a function with a docstring, and add the
feature to the list in README.rst.

	The pull request should work for Python 3.6 and later (currently, up to 3.10).
Check https://github.com/dimitern/xmlstarlet/pulls and make sure all checks
pass OK. Binary wheels are built automatically for each PR, or git push to
a branch.

Tips

To run a subset of tests:

$ pytest tests.test_xmlstarlet

(python setup.py test will also work as alias of pytest).

Deploying

A reminder for the maintainers on how to deploy.

Make sure all your changes are committed (including an entry in HISTORY.rst).
Then run:

$ invoke release --dry-run

This runs tox, and then displays how the new version will look like,
without pushing anything.

If it goes OK, make the actual release with:

$ invoke release

Credits

XMLStarlet Developers

	Mikhail Grushinskiy <mgrouch@users.sourceforge.net>

	Dagobert Michelsen <dmichelsen@users.sourceforge.net>

	Noam Postavsky <npostavs@users.sourceforge.net>

XMLStarlet CFFI Python Bindings Maintainer

	Dimiter Naydenov <dimitern@users.noreply.github.com>

Contributors

None yet. Why not be the first?

History

1.6.8 (2022-04-30)

	Added Python 3.10 support.

	Fixed issue #199 (pending confirmation) - upgraded libxml2 and libxslt versions to fix CVEs

	Upgraded development and build-time dependencies.

	Now using latest cibuildwheel 2.5.0, which supports more architectures and builds.

	Started to improve the documentation - added better usage examples.

	Formatting and linting fixes

1.6.7 (2020-12-24)

	Fixed MacOS binary wheel builds

1.6.6 (2020-10-04)

	Simplified and automated building source and binary wheels for Linux, MacOS, and Windows via GitHub actions + cibuildwheel.

	Improved documentation and local development workflow.

	Fixes issue #51 (previously closed as “hard to fix”, but now reopened).

	Completely rewritten native Windows build process, based on libxslt.

	Windows port does not support ls (and conversely listdir()).

1.6.5 (2020-09-29)

	No changes from previous release except up-to-date dependencies and some build fixes.

	Fixes issue #118 (awaiting confirmation).

1.6.3 (2019-10-29)

	First working release on PyPI, based on xmlstarlet-1.6.1 source tarball.

1.6.2 (2019-10-28)

	Second (failed) release on PyPI, based on XMLStarlet master branch.

1.6.1 (2019-10-23)

	First (incomplete) release on PyPI, based on XMLStarlet master branch.

Index

 _static/comment-bright.png

_static/ajax-loader.gif

_static/down-pressed.png

_static/down.png

_static/comment-close.png

_static/comment.png

_static/file.png

_static/minus.png

nav.xhtml

 Table of Contents

 		
 Welcome to XMLStarlet CFFI’s documentation!

 		
 XMLStarlet CFFI

 		
 Features

 		
 Credits

 		
 Installation

 		
 Stable release

 		
 From sources

 		
 Usage

 		
 xml CLI Help

 		
 From Python

 		
 xmlstarlet.edit()

 		
 Contributing

 		
 Types of Contributions

 		
 Report Bugs

 		
 Fix Bugs

 		
 Implement Features

 		
 Write Documentation

 		
 Submit Feedback

 		
 Get Started!

 		
 Pull Request Guidelines

 		
 Tips

 		
 Deploying

 		
 Credits

 		
 XMLStarlet Developers

 		
 XMLStarlet CFFI Python Bindings Maintainer

 		
 Contributors

 		
 History

 		
 1.6.8 (2022-04-30)

 		
 1.6.7 (2020-12-24)

 		
 1.6.6 (2020-10-04)

 		
 1.6.5 (2020-09-29)

 		
 1.6.3 (2019-10-29)

 		
 1.6.2 (2019-10-28)

 		
 1.6.1 (2019-10-23)

_static/up-pressed.png

_static/up.png

_static/plus.png

